Provide your username and password to log in:

Publications

We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).

Filter by Keyword

Filter by Application

Filter by Product/Solution


Pediatric reports, 13, 9--14
December, 2020

Detection of New Translocation in Infant Twins with Concordant ALL and Discordant Outcome.

Bahoush, Golamreza, Vafapour, Maryam, Kariminejad, Roxana

<p>About 2-5% of acute lymphoblastic leukemia (ALL) cases in pediatric patients are infants with an unfavorable prognosis because of high relapse probability. Early detection of the disease is, therefore, very important. Despite the fact that leukemia in twins occurs rarely, more attention has been paid to it in genetic studies. In the present study, through cytogenetic testing, a special case of concordant ALL in monozygotic twins was presented with different outcomes. In spite of an acceptable initial consequence to medical treatment in twins, in another brother (Twin B), early relapse was observed. In the cytogenetic study, both twins expressed while twin A expressed No cases have previously reported this mutation. Whether this translocation has a protective role for leukemia with mixed-lineage leukemia (MLL) gene rearrangement is still unclear. The difference in the translocation identified in the identical twins is also subject to further investigations.</p>

Digital object identifier (DOI): 10.3390/pediatric13010002

Genes, 11
June, 2020

Interstitial Telomeric Repeats Are Rare in Turtles.

Clemente, Lorenzo, Mazzoleni, Sofia, Pensabene Bellavia, Eleonora, Augstenová, Barbora, Auer, Markus, Praschag, Peter, Protiva, Tomáš, Velenský, Petr, Wagner, Philipp, Fritz, Uwe, Kratochvíl, Lukáš, Rovatsos, Michail

<p>Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG) repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.</p>

Digital object identifier (DOI): 10.3390/genes11060657

Scientific reports, 10, 2899
February, 2020

A High Throughput Approach to Reconstruct Partial-Body and Neutron Radiation Exposures on an Individual Basis.

Shuryak, Igor, Turner, Helen C., Perrier, Jay R., Cunha, Lydia, Canadell, Monica Pujol, Durrani, Mohammad H., Harken, Andrew, Bertucci, Antonella, Taveras, Maria, Garty, Guy, Brenner, David J.

Biodosimetry-based individualized reconstruction of complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can improve treatment decisions after mass-casualty radiation-related incidents. We used a high-throughput micronucleus assay with automated scanning and imaging software on ex-vivo irradiated human lymphocytes to: a) reconstruct partial-body and/or neutron exposure, and b) estimate separately the photon and neutron doses in a mixed exposure. The mechanistic background is that, compared with total-body photon irradiations, neutrons produce more heavily-damaged lymphocytes with multiple micronuclei/binucleated cell, whereas partial-body exposures produce fewer such lymphocytes. To utilize these differences for biodosimetry, we developed metrics that describe micronuclei distributions in binucleated cells and serve as predictors in machine learning or parametric analyses of the following scenarios: (A) Homogeneous gamma-irradiation, mimicking total-body exposures, vs. mixtures of irradiated blood with unirradiated blood, mimicking partial-body exposures. (B) X rays vs. various neutron + photon mixtures. The results showed high accuracies of scenario and dose reconstructions. Specifically, receiver operating characteristic curve areas (AUC) for sample classification by exposure type reached 0.931 and 0.916 in scenarios A and B, respectively. R for actual vs. reconstructed doses in these scenarios reached 0.87 and 0.77, respectively. These encouraging findings demonstrate a proof-of-principle for the proposed approach of high-throughput reconstruction of clinically-relevant complex radiation exposure scenarios.

Digital object identifier (DOI): 10.1038/s41598-020-59695-9

BMC plant biology, 19, 183
May, 2019

Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background.

Devi, Urmila, Grewal, Surbhi, Yang, Cai-Yun, Hubbart-Edwards, Stella, Scholefield, Duncan, Ashling, Stephen, Burridge, Amanda, King, Ian P, King, Julie

Triticum timopheevii (2n = 4x = 28; A<sup>t</sup>A<sup>t</sup>GG), is an important source for new genetic variation for wheat improvement with genes for potential disease resistance and salt tolerance. By generating a range of interspecific hybrid lines, T. timopheevii can contribute to wheat's narrow gene-pool and be practically utilised in wheat breeding programmes. Previous studies that have generated such introgression lines between wheat and its wild relatives have been unable to use high-throughput methods to detect the presence of wild relative segments in such lines. A whole genome introgression approach, exploiting homoeologous recombination in the absence of the Ph1 locus, has resulted in the transfer of different chromosome segments from both the A and G genomes of T. timopheevii into wheat. These introgressions have been detected and characterised using single nucleotide polymorphism (SNP) markers present on a high-throughput Axiom® Genotyping Array. The analysis of these interspecific hybrid lines has resulted in the detection of 276 putative unique introgressions from T. timopheevii, thereby allowing the generation of a genetic map of T. timopheevii containing 1582 SNP markers, spread across 14 linkage groups representing each of the seven chromosomes of the A and G genomes of T. timopheevii. The genotyping of the hybrid lines was validated through fluorescence in situ hybridisation (FISH). Comparative analysis of the genetic map of T. timopheevii and the physical map of the hexaploid wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed the presence of inter- and intra-genomic translocations within the A and G genomes of T. timopheevii that have been previously only detected through cytological techniques. In this work, we report a set of SNP markers present on a high-throughput genotyping array, able to detect the presence of T. timopheevii in a hexaploid wheat background making it a potentially valuable tool for marker assisted selection (MAS) in wheat pre-breeding programs. These valuable resources of high-density molecular markers and wheat-T. timopheevii hybrid lines will greatly enhance the work being undertaken for wheat improvement through wild relative introgressions.

Digital object identifier (DOI): 10.1186/s12870-019-1785-z

Journal of applied genetics, 60, 63–70
February, 2019

Structural and copy number chromosome abnormalities in canine cutaneous mast cell tumours.

Vozdova, Miluse, Kubickova, Svatava, Cernohorska, Halina, Fröhlich, Jan, Fictum, Petr, Rubes, Jiri

Mast cell tumours (MCTs) are the most common skin tumours in dogs. Their clinical behaviour is variable and their aetiology remains largely unknown. We performed a metaphase fluorescence in situ hybridisation (FISH) with whole chromosome painting probes, and interphase FISH with BAC probes for 14 cancer-related genes to reveal clonal structural chromosome rearrangements and copy number variants (CNVs) in canine cutaneous MCTs. The metaphase FISH performed in three MCTs revealed several clonal monosomies and trisomies and two different chromosome rearrangements. No centric fusions were detected. The interphase FISH showed a variety of low frequency CNVs for the individual cancer-related genes. The heterogeneous character of the detected abnormalities indicates increased chromosome instability in canine MCTs. The clonal gain of chromosome 11 was detected in 81% (13/16) of the MCTs. Further research is needed to evaluate the significance of this abnormality as prognostic factor for the survival time or recurrence risk assessments in canine cutaneous MCTs.

Digital object identifier (DOI): 10.1007/s13353-018-0471-4

Cells, 8(7), 708
2019

X-rays Activate Telomeric Homologous Recombination Mediated Repair in Primary Cells

De Vitis, M., Berardinelli, F., Coluzzi, E, Marinaccio, J.and O’Sullivan, R.J.and Sgura, A.

Cancer cells need to acquire telomere maintenance mechanisms in order to counteract progressive telomere shortening due to multiple rounds of replication. Most human tumors maintain their telomeres expressing telomerase whereas the remaining 15%–20% utilize the alternative lengthening of telomeres (ALT) pathway. Previous studies have demonstrated that ionizing radiations (IR) are able to modulate telomere lengths and to transiently induce some of the ALT-pathway hallmarks in normal primary fibroblasts. In the present study, we investigated the telomere length modulation kinetics, telomeric DNA damage induction, and the principal hallmarks of ALT over a period of 13 days in X-ray-exposed primary cells. Our results show that X-ray-treated cells primarily display telomere shortening and telomeric damage caused by persistent IR-induced oxidative stress. After initial telomere erosion, we observed a telomere elongation that was associated to the transient activation of a homologous recombination (HR) based mechanism, sharing several features with the ALT pathway observed in cancer cells. Data indicate that telomeric damage activates telomeric HR-mediated repair in primary cells. The characterization of HR-mediated telomere repair in normal cells may contribute to the understanding of the ALT pathway and to the identification of novel strategies in the treatment of ALT-positive cancers.

International journal of radiation biology, 94, 664–670
July, 2018

Evaluation of chromosomal aberrations induced by 188Re-dendrimer nanosystem on B16f1 melanoma cells.

Tassano, Marcos, Oddone, Natalia, Fernández, Marcelo, Porcal, Williams, García, MF, Martínez-López, Wilner, Benech, Juan Claudio, Cabral, Pablo

To study the rhenium-188 labeling of polyamidoamine (PAMAM) generation 4 (G4) dendrimer and its evaluation on biodistribution and chromosomal aberrations in melanoma cells induced by ionizing radiation as potential treatment agent. Dendrimers were first conjugated with Suc-HYNIC (succinimidyl 6-hydrazinopyridine-3-carboxylic acid hydrochloride). Dendrimer-HYNIC was then incubated with ReO . Biodistribution was performed administrating Re-dendrimer to normal (NM) or melanoma-bearing mice (MBM). Chromosome aberration test was conducted in order to measure treatment capacity of Re-dendrimer in melanoma cells. Radiolabeling yield of dendrimer was approx. 70%. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with tumor uptake of 6% of injected dose. Aberrant metaphases quantified in control cells were 7%, increasing to 29.5% in cells treated with 15μCi (0.555 MBq) of Re-dendrimer for 24 h. Re-dendrimer can produce double-stranded breaks in DNA induced by ionizing radiation in melanoma cells in vitro.

Digital object identifier (DOI): 10.1080/09553002.2018.1478161

Cancer genomics & proteomics, 15, 91–114
March, 2018

Characterization of Camptothecin-induced Genomic Changes in the Camptothecin-resistant T-ALL-derived Cell Line CPT-K5.

Kjeldsen, Eigil, Nielsen, Christine J F, Roy, Amit, Tesauro, Cinzia, Jakobsen, Ann-Katrine, Stougaard, Magnus, Knudsen, Birgitta R

Acquisition of resistance to topoisomerase I (TOP1)-targeting camptothecin (CPT) derivatives is a major clinical problem. Little is known about the underlying chromosomal and genomic mechanisms. We characterized the CPT-K5 cell line expressing mutant CPT-resistant TOP1 and its parental T-cell derived acute lymphoblastic leukemia CPT-sensitive RPMI-8402 cell line by karyotyping and molecular genetic methods, including subtractive oligo-based array comparative genomic hybridization (soaCGH) analysis. Karyotyping revealed that CPT-K5 cells had acquired additional structural aberrations and a reduced modal chromosomal number compared to RPMI-8402. soaCGH analysis identified vast copy number alterations and >200 unbalanced DNA breakpoints distributed unevenly across the chromosomal complement in CPT-K5. In addition, the short tandem repeat alleles were found to be highly different between CPT-K5 and its parental cell line. We identified copy number alterations affecting genes important for maintaining genome integrity and reducing CPT-induced DNA damage. We show for the first time that short tandem repeats are targets for TOP1 cleavage, that can be differentially stimulated by CPT.

Digital object identifier (DOI): 10.21873/cgp.20068

Scientific Reports, 8(1), 1141
2018

First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness

Cirrone, GAP, Manti, L, Margarone, D, Petringa, G, Giuffrida, L, Minopoli, A, Picciotto, A, Russo, G, Cammarata, F, Pisciotta, P, others

Protontherapy is hadrontherapy’s fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy’s superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11B → 3α reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy’s ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated.

Oncotarget, 8, 26269–26280
April, 2017

Opposite effects of GCN5 and PCAF knockdowns on the alternative mechanism of telomere maintenance.

Jeitany, Maya, Bakhos-Douaihy, Dalal, Silvestre, David C, Pineda, Jose R, Ugolin, Nicolas, Moussa, Angela, Gauthier, Laurent R, Busso, Didier, Junier, Marie-Pierre, Chneiweiss, Hervé, Chevillard, Sylvie, Desmaze, Chantal, Boussin, François D

Cancer cells can use a telomerase-independent mechanism, known as alternative lengthening of telomeres (ALT), to elongate their telomeres. General control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF) are two homologous acetyltransferases that are mutually exclusive subunits in SAGA-like complexes. Here, we reveal that down regulation of GCN5 and PCAF had differential effects on some phenotypic characteristics of ALT cells. Our results suggest that GCN5 is present at telomeres and opposes telomere recombination, in contrast to PCAF that may indirectly favour them in ALT cells.

Digital object identifier (DOI): 10.18632/oncotarget.15447

International journal of radiation biology, 93, 48–57
January, 2017

Dose assessment intercomparisons within the RENEB network using G0-lymphocyte prematurely condensed chromosomes (PCC assay).

Terzoudi, Georgia I, Pantelias, Gabriel, Darroudi, Firouz, Barszczewska, Katarzyna, Buraczewska, Iwona, Depuydt, Julie, Georgieva, Dimka, Hadjidekova, Valeria, Hatzi, Vasiliki I, Karachristou, Ioanna, Karakosta, Maria, Meschini, Roberta, M'Kacher, Radhia, Montoro, Alegria, Palitti, Fabrizio, Pantelias, Antonio, Pepe, Gaetano, Ricoul, Michelle, Sabatier, Laure, Sebastià , Natividad, Sommer, Sylwester, Vral, Anne, Zafiropoulos, Demetre, Wojcik, Andrzej

Dose assessment intercomparisons within the RENEB network were performed for triage biodosimetry analyzing G0-lymphocyte PCC for harmonization, standardization and optimization of the PCC assay. Comparative analysis among different partners for dose assessment included shipment of PCC-slides and captured images to construct dose-response curves for up to Gy γ-rays. Accident simulation exercises were performed to assess the suitability of the PCC assay by detecting speed of analysis and minimum number of cells required for categorization of potentially exposed individuals. Calibration data based on Giemsa-stained fragments in excess of 46 PCC were obtained by different partners using galleries of PCC images for each dose-point. Mean values derived from all scores yielded a linear dose-response with approximately 4 excess-fragments/cell/Gy. To unify scoring criteria, exercises were carried out using coded PCC-slides and/or coded irradiated blood samples. Analysis of samples received 24 h post-exposure was successfully performed using Giemsa staining (1 excess-fragment/cell/Gy) or centromere/telomere FISH-staining for dicentrics. Dose assessments by RENEB partners using appropriate calibration curves were mostly in good agreement. The PCC assay is quick and reliable for whole- or partial-body triage biodosimetry by scoring excess-fragments or dicentrics in G0-lymphocytes. Particularly, analysis of Giemsa-stained excess PCC-fragments is simple, inexpensive and its automation could increase throughput and scoring objectivity of the PCC assay.

Digital object identifier (DOI): 10.1080/09553002.2016.1234725

Journal of applied toxicology : JAT
December, 2016

Genotoxic risk of ethyl-paraben could be related to telomere shortening.

Finot, F, Kaddour, A, Morat, L, Mouche, I, Zaguia, N, Cuceu, C, Souverville, D, Négrault, S, Cariou, O, Essahli, A, Prigent, N, Saul, J, Paillard, F, Heidingsfelder, L, Lafouge, P, Al Jawhari, M, Hempel, W M, El May, M, Colicchio, B, Dieterlen, A, Jeandidier, E, Sabatier, L, Clements, J, M'Kacher, R

<p>The ability of parabens to promote the appearance of multiple cancer hallmarks in breast epithelium cells provides grounds for regulatory review of the implication of the presence of parabens in human breast tissue. It is well documented that telomere dysfunction plays a significant role in the initiation of genomic instability during carcinogenesis in human breast cancer. In the present study, we evaluated the genotoxic effect of ethyl 4-hydroxybenzoate (ethyl-paraben), with and without metabolic activation (S9), in studies following OECD guidelines. We observed a significant increase in genotoxic damage using the Mouse Lymphoma Assay and in vitro micronucleus (MN) tests in the L5178Y cell line in the presence of S9 only after a short exposure. A high frequency of MN was observed in the TK6 cells after a short exposure (3 h) in the presence of S9 and a long exposure (26 h) without S9. We found significant increases in the MN frequency and induced chromosomal aberrations in the lymphocytes of only one donor after ethyl-paraben exposure in the presence of S9 after a short exposure. Cytogenetic characterization of the paraben-treated cells demonstrated telomere shortening associated with telomere loss and telomere deletions in L5178Y and TK6 cells and lymphocytes of the paraben sensitive-donor. In a control cohort of 68 human lymphocytes, telomere length and telomere aberrations were age-dependent and showed high inter-individual variation. This study is the first to link telomere shortening and the genotoxic effect of ethyl paraben in the presence of S9 and raises the possibility that telomere shortening may be a proxy for underlying inter-individual sensitivity to ethyl-paraben. Copyright © 2016 John Wiley &amp; Sons, Ltd.</p>

Digital object identifier (DOI): 10.1002/jat.3425

Nucleic Acids Res
June, 2016

Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment.

Schipler, Agnes, Mladenova, Veronika, Soni, Aashish, Nikolov, Vladimir, Saha, Janapriya, Mladenov, Emil, Iliakis, George

Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect.

Digital object identifier (DOI): 10.1093/nar/gkw487

J Radiat Res, 57(3), 220–226
June, 2016

Analysis of chromosome translocation frequency after a single CT scan in adults.

Abe, Yu, Miura, Tomisato, Yoshida, Mitsuaki A., Ujiie, Risa, Kurosu, Yumiko, Kato, Nagisa, Katafuchi, Atsushi, Tsuyama, Naohiro, Kawamura, Fumihiko, Ohba, Takashi, Inamasu, Tomoko, Shishido, Fumio, Noji, Hideyoshi, Ogawa, Kazuei, Yokouchi, Hiroshi, Kanazawa, Kenya, Ishida, Takashi, Muto, Satoshi, Ohsugi, Jun, Suzuki, Hiroyuki, Ishikawa, Tetsuo, Kamiya, Kenji, Sakai, Akira

We recently reported an increase in dicentric chromosome (DIC) formation after a single computed tomography (CT) scan (5.78-60.27 mSv: mean 24.24 mSv) and we recommended analysis of 2000 metaphase cells stained with Giemsa and centromere-FISH for dicentric chromosome assay (DCA) in cases of low-dose radiation exposure. In the present study, we analyzed the frequency of chromosome translocations using stored Carnoy's-fixed lymphocyte specimens from the previous study; these specimens were from 12 patients who were subject to chromosome painting of Chromosomes 1, 2 and 4. Chromosomes 1, 2 and 4 were analyzed in ∼5000 cells, which is equivalent to the whole-genome analysis of almost 2000 cells. The frequency of chromosome translocation was higher than the number of DICs formed, both before and after CT scanning. The frequency of chromosome translocations tended to be higher, but not significantly higher, in patients with a treatment history compared with patients without such a history. However, in contrast to the results for DIC formation, the frequency of translocations detected before and after the CT scan did not differ significantly. Therefore, analysis of chromosome translocation may not be a suitable assay for detecting chromosome aberrations in cases of low-dose radiation exposure from a CT scan. A significant increase in the frequency of chromosome translocations was not likely to be detected due to the high baseline before the CT scan; the high and variable frequency of translocations was probably due to multiple confounding factors in adults.

Digital object identifier (DOI): 10.1093/jrr/rrv090

Genet Sel Evol, 48, 12
2016

The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity.

Havelka, Miloš, Bytyutskyy, Dmytro, Symonová, Radka, Ráb, Petr, Flaj\vshans, Martin

<p>One of the five basal actinopterygian lineages, the Chondrostei, including sturgeon, shovelnose, and paddlefish (Order Acipenseriformes) show extraordinary ploidy diversity associated with three rounds of lineage-specific whole-genome duplication, resulting in three levels of ploidy in sturgeon. Recently, incidence of spontaneous polyploidization has been reported among cultured sturgeon and it could have serious negative implications for the economics of sturgeon farming. We report the occurrence of seven spontaneous heptaploid (7n) Siberian sturgeon Acipenser baerii, which is a functional tetraploid species (4n) with ~245 chromosomes. Our aims were to assess ploidy level and chromosome number of the analysed specimens and to identify the possible mechanism that underlies the occurrence of spontaneous additional chromosome sets in their genome.Among 150 specimens resulting from the mating of a tetraploid (4n) A. baerii (~245 chromosomes) dam with a hexaploid (6n) A. baerii (~368 chromosomes) sire, 143 displayed a relative DNA content that corresponds to pentaploidy (5n) with an absolute DNA content of 8.98 ± 0.03 pg DNA per nucleus and nuclear area of 35.3 ± 4.3 μm(2) and seven specimens exhibited a relative DNA content that corresponds to heptaploidy (7n), with an absolute DNA content of 15.02 ± 0.04 pg DNA per nucleus and nuclear area of 48.4 ± 5.1 μm(2). Chromosome analyses confirmed a modal number of ~437 chromosomes in these heptaploid (7n) individuals. DNA genotyping of eight microsatellite loci followed by parental assignment confirmed spontaneous duplication of the maternal chromosome sets via retention of the second polar body in meiosis II as the mechanism for the formation of this unusual chromosome number and ploidy level in a functional tetraploid A. baerii.We report the second highest chromosome count among vertebrates in cultured sturgeon (~437) after the schizothoracine cyprinid Ptychobarbus dipogon with ~446 chromosomes. The finding also represents the highest documented chromosome count in Acipenseriformes, and the first report of a functional heptaploid (7n) genome composition in sturgeon. To our knowledge, this study provides the first clear evidence of a maternal origin for spontaneous polyploidization in cultured A. baerii. To date, all available data indicate that spontaneous polyploidization occurs frequently among cultured sturgeons.</p>

Digital object identifier (DOI): 10.1186/s12711-016-0194-0

Atom Indonesia, 42(2), 71-77
2016

Comparison of Radiosensitivity of Human Chromosomes 1, 2 and 4 from One Healthy Donor

Ramadhani, Purnami, Yoshida

In general, it was assumed that the chromosome aberration induced by ionizing radiation is proportional to the chromosome size. From this viewpoint, the higher chromosome size, the more resistant to radiation. However, different opinions, in which chromosomes are particularly sensitive or resistant to radiation, are also still followed until now. Here in this research, we compared the chromosome sensitivity between chromosomes number 1, 2, and 4 using the FISH (fluorescence in situ hybridization) technique. From this research, we expect that the information obtained could show clearly whether a longer chromosome is more frequently involved in translocations and also more resistant to radiation than a shorter one. The type of chromosome aberration considered was limited only to translocation and we used one sample donor in order to avoid donor variability. The whole blood from a healthy female was irradiated with γ-rays with doses of 1, 3 and 5 Gy, respectively. Isolated lymphocytes from the whole blood were then cultured for 48 hours. After the culture process was completed, preparations of harvest and metaphase chromosomes were carried out. Chromosomes 1, 2, and 4 were stained with different fluorochromes. The translocation of each chromosome at each dose point was subsequently evaluated from 50 images obtained from an automated metaphase finder and capturing system. An additional analysis was performed to identify which chromosome arm was more frequently involved in translocation. Further analyses were also conducted with the aim of determining which chromosome band had a higher frequency of radiation-induced breakage. The experimental results showed that chromosome number 4 was more frequently involved in translocations compared to chromosomes 1 and 2 at 5 Gy. In contrast, at doses of 1 and 3 Gy translocations involving chromosomes number 1 and 2 were more numerous compared to the ones involving chromosome 4. However, if the number of translocation was accumulated for all the doses applied, the chromosome number 4 was the chromosome most frequently involved in translocations. Breakpoint analysis revealed that in chromosome 1, chromosome 2, and chromosome 4, the highest chromosome bands as break position were in band q32, p13, and q21, respectively. It can be concluded that chromosome 4 is more sensitive to radiation in all doses point, despite having less DNA content than chromosomes 1 and 2. Thus, it was showed that our research cannot support the general assumption about chromosome aberration induced by radiation being proportional to DNA content.

Sci Rep, 6, 32510
2016

Replication Timing of Human Telomeres is Conserved during Immortalization and Influenced by Respective Subtelomeres.

Piqueret-Stephan, Laure, Ricoul, Michelle, Hempel, William M., Sabatier, Laure

Telomeres are specific structures that protect chromosome ends and act as a biological clock, preventing normal cells from replicating indefinitely. Mammalian telomeres are replicated throughout S-phase in a predetermined order. However, the mechanism of this regulation is still unknown. We wished to investigate this phenomenon under physiological conditions in a changing environment, such as the immortalization process to better understand the mechanism for its control. We thus examined the timing of human telomere replication in normal and SV40 immortalized cells, which are cytogenetically very similar to cancer cells. We found that the timing of telomere replication was globally conserved under different conditions during the immortalization process. The timing of telomere replication was conserved despite changes in telomere length due to endogenous telomerase reactivation, in duplicated homologous chromosomes, and in rearranged chromosomes. Importantly, translocated telomeres, possessing their initial subtelomere, retained the replication timing of their homolog, independently of the proportion of the translocated arm, even when the remaining flanking DNA is restricted to its subtelomere, the closest chromosome-specific sequences (inferior to 500 kb). Our observations support the notion that subtelomere regions strongly influence the replication timing of the associated telomere.

Digital object identifier (DOI): 10.1038/srep32510

J Radiat Res
April, 2014

Biodosimetry estimation using the ratio of the longest:shortest lengthin the premature chromosome condensation (PCC) method applying autocaptureand automatic image analysis.

Jorge E. González, Ivonne Romero, Eric Gregoire, Cécile Martin, Ana I. Lamadrid, Philippe Voisin, Joan-Francesc Barquinero, Omar García

The combination of automatic image acquisition and automatic image analysis of premature chromosome condensation (PCC) spreads was tested as a rapid biodosimeter protocol. Human peripheral lymphocytes were irradiated with (60)Co gamma rays in a single dose of between 1 and 20 Gy, stimulated with phytohaemaglutinin and incubated for 48 h, division blocked with Colcemid, and PCC-induced by Calyculin A. Images of chromosome spreads were captured and analysed automatically by combining the Metafer 4 and CellProfiler platforms. Automatic measurement of chromosome lengths allows the calculation of the length ratio (LR) of the longest and the shortest piece that can be used for dose estimation since this ratio is correlated with ionizing radiation dose. The LR of the longest and the shortest chromosome pieces showed the best goodness-of-fit to a linear model in the dose interval tested. The application of the automatic analysis increases the potential use of the PCC method for triage in the event of massive radiation causalities.

blood, 1850-1859
2014

Telomerase functions beyond telomere maintenance in primary cutaneous T-cell lymphoma

Edith Chevret, Laetitia Andrique, Martina Prochazkova-Carlotti, Jacky Ferrer, David Cappellen, Elodie Laharanne, Yamina Idrissi, Anna Boettiger, Wafa Sahraoui, Florian Ruiz, Anne Pham-Ledard, Beatrice Vergier, Francis Belloc, Pierre Dubus, Marie Beylot-Barry, Jean-Philippe Merlio

Telomere erosion may be counteracted by telomerase. Here we explored telomere length (TL) and telomerase activity (TA) in primary cutaneous T-cell lymphoma (CTCL) by using quantitative polymerase chain reaction and interphase quantitative fluorescence in situ hybridization assays. Samples from patients with S´ezary syndrome (SS), transformed mycosis fungoides (T-MF), and cutaneous anaplastic large cell lymphoma were studied in parallel with corresponding cell lines to evaluate the relevance of TL and TA as target candidates for diagnostic and therapeutic purposes. Compared with controls, short telomeres were observed in aggressive CTCL subtypes such as SS and T-MF and were restricted to neoplastic cells in SS. While no genomic alteration of the hTERT (human telomerase catalytic subunit) locus was observed in patients’ tumor cells, TA was detected. To understand the role of telomerase in CTCL, we manipulated its expression in CTCL cell lines. Telomerase inhibition rapidly impeded in vitro cell proliferation and led to cell death, while telomerase overexpression stimulated in vitro proliferation and clonogenicity properties and favored tumor development in immunodeficient mice. Our data indicate that, besides maintenance of TL, telomerase exerts additional functions in CTCL. Therefore, targeting these functions might represent an attractive therapeutic strategy, especially in aggressive CTCL.

Cell Biol Toxicol, 29(4), 213–227
August, 2013

Genotoxicity of hydroquinone in A549 cells.

Cheng Peng, Dionne Arthur, Faye Liu, Jongwha Lee, Qing Xia, Martin F. Lavin, Jack C. Ng

<p>Hydroquinone (HQ) is found in natural and anthropogenic sources including food, cosmetics, cigarette smoke, and industrial products. In addition to ingestion and dermal absorption, human exposure to HQ may also occur by inhaling cigarette smoke or polluted air. The adverse effects of HQ on respiratory systems have been studied, but genotoxicity HQ on human lung cells is unclear. The aim of this study was to investigate the cytotoxicity and genotoxicity of HQ in human lung alveolar epithelial cells (A549). We found that HQ induced a dose response in cell growth inhibition and DNA damage which was associated with an increase in oxidative stress. Cytotoxicity results demonstrated that HQ was most toxic after 24 h (LC<sub>50</sub> = 33 μM) and less toxic after 1 h exposure (LC<sub>50</sub> = 59 μM). Genotoxicity of HQ was measured using the Comet assay, H2AX phosphorylation, and chromosome aberration formation. Results from the comet assay revealed that DNA damage was highest during the earlier hours of exposure (1 and 6 h) and thereafter was reduced. A similar pattern was observed for H2AX phosphorylation suggesting that damage DNA may be repaired in later exposure hours. An increase in chromosomal aberration corresponded with maximal DNA damage which further confirmed the genotoxic effects of HQ. To investigate whether oxidative stress was involved in the cytotoxic and genotoxic effects of HQ, cellular glutathione and 8-Oxo-deoguanisone (8-Oxo-dG) formation were measured. A decrease in the reduced glutathione (GSH) and an increase oxidized glutathione (GSSG) was observed during the early hours of exposure which corresponded with elevated 8-Oxo-dG adducts. Together these results demonstrate that HQ exerts its cytotoxic and genotoxic effects in A549 lung cells, probably through DNA damage via oxidative stress.</p>

Digital object identifier (DOI): 10.1007/s10565-013-9247-0