Publications

We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).

Filter by Keyword

Filter by Application

Filter by Product/Solution

Filtering by 'Microbiology'

Remove All Filters

European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 40, 2171--2176
October, 2021

Performances of automated digital imaging of Gram-stained slides with on-screen reading against manual microscopy.

Fischer, Adrien, Azam, Nouria, Rasga, Lara, Barras, Valérie, Tangomo, Manuela, Renzi, Gesuele, Vuilleumier, Nicolas, Schrenzel, Jacques, Cherkaoui, Abdessalam

<p>The objective of this study was to evaluate the performances of the automated digital imaging of Gram-stained slides against manual microscopy. Four hundred forty-three identified Gram-stained slides were included in this study. When both methods agreed, we considered the results as correct, and no further examination was carried out. Whenever the methods gave discrepant results, we reviewed the digital images and the glass slides by manual microscopy to avoid incorrectly read smears. The final result was a consensus of multiple independent reader interpretations. Among the 443 slides analyzed in this study, 101 (22.8%) showed discrepant results between the compared methods. The rates of discrepant results according to the specimen types were 5.7% (9/157) for positive blood cultures, 42% (60/142) for respiratory tract specimens, and 22% (32/144) for sterile site specimens. After a subsequent review of the discrepant slides, the final rate of discrepancies dropped to 7.0% (31/443). The overall agreement between the compared methods and the culture results reached 78% (345/443) and 79% (349/443) for manual microscopy and automated digital imaging, respectively. According to culture results, the specificity for automated digital imaging and manual microscopy were 90.8% and 87.7% respectively. In contrast, sensitivity was 84.1% for the two compared methods. The discrepant results were mostly encountered with microorganism morphologies of rare occurrence. The results reported in this study emphasize that on-screen reading is challenging, since the recognition of morphologies on-screen can appear different as compared to routine manual microscopy. Monitoring of Gram stain errors, which is facilitated by automated digital imaging, remains crucial for the quality control of reported Gram stain results.</p>

Digital object identifier (DOI): 10.1007/s10096-021-04233-2

The British journal of dermatology
January, 2021

COVID-19 related dermatosis in November 2019. Could this case be Italy's patient zero?

Gianotti, R., Barberis, M., Fellegara, G., Galván-Casas, C., Gianotti, E.

<p>Milan, the largest city in northern Italy, was one of the first European metropolitan areas to be affected by the COVID-19 pandemic. We analyzed skin biopsies of patients from Milan with dermatoses and positive PCR swabs for SARS-CoV-2 at different stages of the infection (1,2). The results were compared to skin biopsies of 20 COVID-19 non-diagnosed patients with dermatoses, who were at high-risk of COVID-19 infection.</p>

Digital object identifier (DOI): 10.1111/bjd.19804

Tuberculosis (Edinburgh, Scotland), 125, 101993
September, 2020

Machine-assisted interpretation of auramine stains substantially increases through-put and sensitivity of microscopic tuberculosis diagnosis.

Horvath, L., Hänselmann, S., Mannsperger, H., Degenhardt, S., Last, K., Zimmermann, S., Burckhardt, I.

Of all bacterial infectious diseases, infection by Mycobacterium tuberculosis poses one of the highest morbidity and mortality burdens on humans throughout the world. Due to its speed and cost-efficiency, manual microscopy of auramine-stained sputum smears remains a crucial first-line detection method. However, it puts considerable workload on laboratory staff and suffers from a limited sensitivity. Here we validate a scanning and analysis system that combines fully-automated microscopy with deep-learning based image analysis. After automated scanning, the system summarizes diagnosis-relevant image information and presents it to the microbiologist in order to assist diagnosis. We tested the benefit of the automated scanning and analysis system using 531 slides from routine workflow, of which 56 were from culture positive specimen. Assistance by the scanning and analysis system allowed for a higher sensitivity (40/56 positive slides detected) than manual microscopy (34/56 positive slides detected), while greatly reducing manual slide-analysis time from a recommended 5-15 min to around 10 s per slide on average.

Digital object identifier (DOI): 10.1016/j.tube.2020.101993

Applied and environmental microbiology, 86
August, 2020

3-Hydroxybutyrate Derived from Poly-3-Hydroxybutyrate Mobilization Alleviates Protein Aggregation in Heat-Stressed Herbaspirillum seropedicae SmR1.

Alves, Luis Paulo Silveira, Santana-Filho, Arquimedes Paixão, Sassaki, Guilherme Lanzi, de Oliveira Pedrosa, Fabio, Maltempi de Souza, Emanuel, Chubatsu, Leda Satie, Müller-Santos, Marcelo

Under conditions of carbon starvation or thermal, osmotic, or oxidative shock, mutants affected in the synthesis or mobilization of poly-3-hydroxybutyrate (PHB) are known to survive less well. It is still unclear if the synthesis and accumulation of PHB are sufficient to protect bacteria against stress conditions or if the stored PHB has to be mobilized. Here, we demonstrated that mobilization of PHB in SmR1 was heat-shock activated at 45°C. proton ( H) nuclear magnetic resonance spectroscopy (i.e., H-nuclear magnetic resonance) showed that heat shock increased amounts of 3-hydroxybutyrate (3HB) only in strains able to synthesize and mobilize PHB. SmR1 mutants unable to synthesize or mobilize PHB were more susceptible to heat shock and survived less well than the parental strain. When 100 mM 3-hydroxybutyrate was added to the medium, the Δ strain (an mutant unable to synthesize PHB) and the double mutant with deletion of both and (i.e., Δ ) (unable to mobilize PHB) showed partial rescue of heat adaptability (from 0% survival without 3HB to 40% of the initial viable population). Addition of 200 mM 3HB before the imposition of heat shock reduced protein aggregation to 15% in the Δ mutant and 12% in the Δ mutant. We conclude that SmR1 is naturally protected by 3HB released by PHB mobilization, while mutants unable to generate large amounts of 3HB under heat shock conditions are less able to cope with heat damage. Bacteria are subject to abrupt changes in environmental conditions affecting their growth, requiring rapid adaptation. Increasing the concentration of some metabolites can protect bacteria from hostile conditions that lead to protein denaturation and precipitation, as well as damage to plasma membranes. In this work, we demonstrated that under thermal shock, the bacterium depolymerized its intracellular stock polymer known as poly-3-hydroxybutyrate (PHB), rapidly increasing the concentration of 3-hydroxybutyrate (3HB) and decreasing protein precipitation by thermal denaturation. Mutant strains unable to produce or depolymerize PHB suffered irreparable damage during thermal shock, resulting in fast death when incubated at 45°C. Our results will contribute to the development of bacteria better adapted to high temperatures found either in natural conditions or in industrial processes. In the case of and other bacteria that interact beneficially with plants, the understanding of PHB metabolism can be decisive for the development of more-competitive strains and their application as biofertilizers in agriculture.

Digital object identifier (DOI): 10.1128/AEM.01265-20

mSystems, 5
June, 2020

Spatial Compartmentalization of the Microbiome between the Lumen and Crypts Is Lost in the Murine Cecum following the Process of Surgery, Including Overnight Fasting and Exposure to Antibiotics.

Zaborin, Alexander, Penalver Bernabe, Beatriz, Keskey, Robert, Sangwan, Naseer, Hyoju, Sanjiv, Gottel, Neil, Gilbert, Jack A., Zaborina, Olga, Alverdy, John C.

<p>The cecum is a unique region in the mammalian intestinal tract in which the microbiome is localized to two compartments, the lumen and the crypts. The microbiome within crypts is particularly important as it is in direct contact with lining epithelial cells including stem cells. Here, we analyzed the microbiome in cecum of mice using multiple techniques including metagenomics. The lumen microbiome comprised and whereas the crypts were dominated by and , and the mucus comprised a mixture of these 4 phyla. The lumen microbial functional potential comprised mainly carbon metabolism, while the crypt microbiome was enriched for genes encoding stress resistance. In order to determine how this structure, assembly, and function are altered under provocative conditions, we exposed mice to overnight starvation (S), antibiotics (A), and a major surgical injury (partial hepatectomy [H]), as occurs with major surgery in humans. We have previously demonstrated that the combined effect of this "SAH" treatment leads to a major disturbance of the cecal microbiota at the bottom of crypts in a manner that disrupts crypt cell homeostasis. Here, we applied the SAH conditions and observed a loss of compartmentalization in both composition and function of the cecal microbiome associated with major shifts in local physicochemical cues including decrease of hypoxia, increase of pH, and loss of butyrate production. Taken together, these studies demonstrated a defined order, structure, and function of the cecal microbiome that can be disrupted under provocative conditions such as major surgery and its attendant exposures. The proximal colon and cecum are two intestinal regions in which the microbiome localizes to two spatially distinct compartments, the lumen and crypts. The differences in composition and function of luminal and crypt microbiome in the cecum and the effect of physiological stress on their compartmentalization remain poorly characterized. Here, we characterized the composition and function of the lumen-, mucus-, and crypt-associated microbiome in the cecum of mice. We observed a highly ordered microbial architecture within the cecum whose assembly and function become markedly disrupted when provoked by physiological stress such as surgery and its attendant preoperative treatments (i.e., overnight fasting and antibiotics). Major shifts in local physicochemical cues including a decrease in hypoxia levels, an increase in pH, and a loss of butyrate production were associated with the loss of compositional and functional compartmentalization of the cecal microbiome.</p>

Digital object identifier (DOI): 10.1128/mSystems.00377-20

Journal of clinical microbiology, 56
March, 2018

Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network.

Smith, Kenneth P, Kang, Anthony D, Kirby, James E

Microscopic interpretation of stained smears is one of the most operator-dependent and time-intensive activities in the clinical microbiology laboratory. Here, we investigated application of an automated image acquisition and convolutional neural network (CNN)-based approach for automated Gram stain classification. Using an automated microscopy platform, uncoverslipped slides were scanned with a 40× dry objective, generating images of sufficient resolution for interpretation. We collected 25,488 images from positive blood culture Gram stains prepared during routine clinical workup. These images were used to generate 100,213 crops containing Gram-positive cocci in clusters, Gram-positive cocci in chains/pairs, Gram-negative rods, or background (no cells). These categories were targeted for proof-of-concept development as they are associated with the majority of bloodstream infections. Our CNN model achieved a classification accuracy of 94.9% on a test set of image crops. Receiver operating characteristic (ROC) curve analysis indicated a robust ability to differentiate between categories with an area under the curve of &gt;0.98 for each. After training and validation, we applied the classification algorithm to new images collected from 189 whole slides without human intervention. Sensitivity and specificity were 98.4% and 75.0% for Gram-positive cocci in chains and pairs, 93.2% and 97.2% for Gram-positive cocci in clusters, and 96.3% and 98.1% for Gram-negative rods. Taken together, our data support a proof of concept for a fully automated classification methodology for blood-culture Gram stains. Importantly, the algorithm was highly adept at identifying image crops with organisms and could be used to present prescreened, classified crops to technologists to accelerate smear review. This concept could potentially be extended to all Gram stain interpretive activities in the clinical laboratory.

Digital object identifier (DOI): 10.1128/JCM.01521-17

Postgraduate medical journal, 94, 398--403
2018

Adenotonsillar microbiome: an update.

Johnston, James Jordan, Douglas, Richard

Pathogenic bacteria associated with the adenoids and tonsils cause much morbidity in the paediatric population. Hyperplasia of the adenoids is associated with otitis media with effusion and hyperplasia of the palatine tonsils is associated with both recurrent tonsillitis and obstructive sleep apnoea. Most current knowledge of the microbiology of the upper airways has been derived from culture-based studies, which usually reflect only a small fraction of the bacteria present on the mucosal surface. Culture-independent molecular surveys based on 16S ribosomal RNA sequencing are now being employed to determine the microbiota on the surface and within the tissue of adenoids and palatine tonsils. This review describes the new techniques applied in determining the microbiome and summarises the results of studies employing these techniques.

Digital object identifier (DOI): 10.1136/postgradmedj-2018-135602

Front Microbiol, 7, 739
2016

Backup Expression of the PhaP2 Phasin Compensates for phaP1 Deletion in Herbaspirillum seropedicae, Maintaining Fitness and PHB Accumulation.

Alves, Luis P S., Teixeira, Cícero S., Tirapelle, Evandro F., Donatti, Lucélia, Tadra-Sfeir, Michelle Z., Steffens, Maria B R., de Souza, Emanuel M., de Oliveira Pedrosa, Fabio, Chubatsu, Leda S., Müller-Santos, Marcelo

<p>Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50 % in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50 % of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria.</p>

Digital object identifier (DOI): 10.3389/fmicb.2016.00739