Provide your username and password to log in:

Diagnostics (Basel, Switzerland), 8
2018

Aneuploid CTC and CEC.

Lin, Peter Ping

<p>Conventional circulating tumor cell (CTC) detection technologies are restricted to large tumor cells (&gt; white blood cells (WBCs)), or those unique carcinoma cells with double positive expression of surface epithelial cell adhesion molecule (EpCAM) for isolation, and intracellular structural protein cytokeratins (CKs) for identification. With respect to detecting the full spectrum of highly heterogeneous circulating rare cells (CRCs), including CTCs and circulating endothelial cells (CECs), it is imperative to develop a strategy systematically coordinating all tri-elements of nucleic acids, biomarker proteins, and cellular morphology, to effectively enrich and comprehensively identify CRCs. Accordingly, a novel strategy integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH), independent of cell size variation and free of hypotonic damage as well as anti-EpCAM perturbing, has been demonstrated to enable in situ phenotyping multi-protein expression, karyotyping chromosome aneuploidy, and detecting cytogenetic rearrangements of the gene in non-hematologic CRCs. Symbolic non-synonymous single nucleotide variants (SNVs) of both the gene (P33R) in each single aneuploid CTCs, and the cyclin-dependent kinase inhibitor 2A (<em>CDKN2A</em>) tumor suppressor gene in each examined aneuploid CECs, were identified for the first time across patients with diverse carcinomas. Comprehensive co-detecting observable aneuploid CTCs and CECs by SE-iFISH, along with applicable genomic and/or proteomic single cell molecular profiling, are anticipated to facilitate elucidating how those disparate categories of aneuploid CTCs and CECs cross-talk and functionally interplay with tumor angiogenesis, therapeutic drug resistance, tumor progression, and cancer metastasis.</p>

Digital object identifier (DOI): 10.3390/diagnostics8020026

All Publications